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Free Vibration Analysis of Perforated Plate
Submerged in Fluid
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An analytical method to estimate the coupled frequencies of the circular plate submerged in

fluid is developed using the finite Fourier-Bessel series expansion and Rayleigh-Ritz method.

To verify the validity of the analytical method developed, finite element method is used and the

frequency comparisons between them are found to be in good agreement. For the perforated

plate submerged in fluid, it is almost impossible to develop a finite element model due to the

necessity of the fine meshing of the plate and the fluid at the same time. This necessitates the use

of solid plate with equivalent material properties. Unfortunately the effective elastic constants

suggested by the ASME code are found to be not valid for the modal analysis. Therefore in this

study the equivalent material properties of perforated plate are suggested by performing several

finite element analyses with respect to the ligament efficiencies.

Key Words : Perforated Circular Plate, Fluid-Structure Interaction,

Equivalent Material Property, Ligament Efficiency

1. Introduction

The analysis of multiholed plate has attracted
the attention of many engineers and designers due
to the widespread use of tubesheet heat exchan-
gers and other similar equipments. The stress an-
alysis of a plate perforated with a large number of
holes, by finite element method for instant, was a
very costly and time-consuming technique which
solves only one particular problem. But it is pos-
sible to model the perforated plate and to analyze
it and it is no more time-consuming theses days
due to the rapid development of the computer and
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software. However, if a perforated plate is sub-
merged in fluid it is almost impossible to model
and analyze it as is and the fluid at the same time,
which is needed to investigate the effect of the
fluid-structure interaction. The simplest way to
avoid time-consuming and costly analysis of per-
forated plate submerged in fluid is to replace the
perforated plate by an equivalent solid one consi-
dering weakening effect of holes.

For a long time a general method was required
which could replace the real drilled plate by an
equivalent undrilled one of the same dimensions
for which the classical solid plate theory, in the
elastic range, would be applicable. This equiva-
lent plate must have the appropriate elastic con-
stants so as to show the same behavior as the real
one when subjected to the same loading.

These effective elastic constants must be cor-
rectly evaluated, especially in fixed tubesheet heat
exchangers. If they are too low, the stresses at the
junction with shell and head will be lower than
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those in realty. If they are too high, the stress at
the center of the plate, which may be the maxi-
mum, is too low. Thus the proper design can only
be obtained if the analysis is performed using the
best possible estimation of the effective elastic
constants.

Many authors have proposed experimental or
theoretical method to solve this problem. Slot
and O’Donnell (1971) determined the effective
elastic constants for the thick perforated plates by
equating strains in the equivalent solid material
to the average strains in the perforated material.
O’Donnell (1973) also presented those of thin
perforated plates. These results are implemented
in Article A-8000 of Appendix A to the ASME
code Section ITI (ASME, 2004), which contains a
method of analysis for flat perforated plates when
subjected to directly applied loads or loadings re-
sulting from structural interaction with adjacent
members. This method applies to perforated pla-
tes which satisfy the conditions of (a) through
(e) below.

(a) The holes are in an array of equilateral
triangles.

(b) The holes are circular.

(c) There are 19 or more holes.

(d) The ligament efficiency is greater than 5%.

(e) The plate is thicker than twice the hole
pitch. If only in-plane loads or thermal skin stress
are considered this limitation does not apply.

As mentioned previously, the equivalent mate-
rial properties presented in the ASME code is ori-
ginally determined based on the deflection due
to the loading, which considers only the first
mode from the modal characteristic point of view.
Therefore it is necessary to redefine the equivalent
material properties of a perforated plate for the
modal analysis.

This study deals with the free vibration charac-
teristics of circular perforated plate submerged
in fluid, which is assumed to be incompressible,
irrotational and frictionless and is bounded in the
radial direction. The natural frequencies of the
fluid-coupled system are obtained by theoretical
calculations and verified by three dimensional
finite element analyses. The effect of holes on the

modal characteristics is investigated and also new
equivalent elastic constants are proposed, which
can be used for the modal analysis of the per-
forated plate.

2. Theoretical Development

2.1 Formulation

Considering a single circular solid plate sub-
merged in a fluid-filled rigid cylinder as shown
in Fig. 1, where R, h, di and d» represent the
radius and thickness of the plate, and height of
upper and lower fluid respectively, the following
assumptions are made for the theoretical devel-
opment :

(a) the fluid motion is so small that it is con-
sidered to be linear,

(b) the fluid is incompressible, inviscid and
irrotational,

(c) the material of plate is linearly elastic,
homogeneous and isotropic.

The equation of motion for transverse dis-
placement, w, of this perforated plate in contact
with fluid is:

o’ w rtw | 'w Fw
+2 + =
ox* ox2oy?: - ov? ot?
where D*=E*13/12 (1—p*?) is the flexural ri-
gidity of the plate ; o*, ¢*, p* and E™* are density,
Poisson’s ratio, hydrodynamic pressure on the

D ) et =p" (1)

perforated plate and Young’s modulus of the per-
forated plate, respectively.
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Fig. 1 Plate submerged in fluid
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The solution of Eq. (1) takes the following
form of combinations for plate deformation with
respect to polar coordinates (7, ):

w(r,6,t)=cos(nb) m%:I anWam (7) exp (iwt) (2)

where ¢n is unknown coefficient and »# and m
are the numbers of the nodal diameters and cir-
cles of the plate, respectively. For the plate with
clamped boundary condition, the displacement
along the edge of the plate, » =R, must be zero
and therefore dynamic displacement of Eq.(2)
will be reduced to :

(3)
where Aun is the frequency parameter for the plate
in air, which is also determined by the boundary
conditions and is related to the circular frequency
of the plate in air w. J, and I, are the Bessel func-
tion and the modified Bessel function of the first
kind, respectively. For the fixed boundary condi-
tion, the eigenvalues Ann for the plate in a vacuum
can be obtained from the zero slope and zero mo-
ment boundary conditions as follows (Bauer, 1995):

I3 (2anR) _ 1 (AunR)

1 GenR)  Li(AumR) *)

2.2 Velocity potential

The fluid region contained in cylindrical rigid
vessel is bisected into two parts, an upper fluid
and a lower fluid by the circular plate. The three
dimensional oscillatory fluid flow in the cylin-
drical coordinates can be described by the veloci-
ty potential. The facing side of the circular plates
is contacted with inviscid and incompressible flu-
id. The fluid movement due to vibration of the
plate is described by the spatial velocity potential
that satisfies the Laplace equation :

2
0 @(7:9,;2,96,” /CZ (5>

VEO(r,0,x,t) =
where ¢ is the speed of the sound in the fluid.
It is possible to separate the function @ with re-
spect to # by observing that in the radial direction
the vessel which supports the edges of the plate
are assumed to be rigid, as in the case of the com-

pletely contact circular plate. Thus :

O (r,0,x,t) =iwd;(r, 0,x)exp(iwt),

=12 ©

where the upper fluid is referred to with a sub-
script “1” while the lower fluid is denoted by a
subscript “2”.

For the bounded fluid, the boundary condition
along the cylindrical vessel wall assures the zero
fluid velocity in the radial direction given by :

9¢; | _

or r:R_O <7>
When it is assumed that all the vessel walls are
rigid and the plate thickness is negligible com-
paring with the vessel height, the velocity poten-
tial must satisfy the followings :

WZO for the upper fluid (8a)
W:o for the lower fluid  (8b)

2.3 Method of solution

Since the plate thickness is neglected, the com-
patibility conditions at the fluid interface with the
solid plate yield :

LAY E A" (50)
W02 | _y(r.9) (9b)

For the perforated plate equation (9) is not true
because upper and lower fluid can move through
the hole, generating very complex velocity poten-
tial.

When the gravity is neglected, it is useful to
introduce the Rayleigh quotient in order to cal-
culate the coupled natural frequencies of the cir-
cular plate submerged in the ideal fluid.

Va

2 __
=TT (10)

where V; is the potential energies of the plate
and T, and Tr are the reference kinetic energies
of the plate and the fluid, respectively. In order
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to perform numerical calculations for each fixed
n value, a sufficiently large finite J/ number of
terms must be considered in all the previous sums
of the expanding term, m. For this purpose, a
vector ¢ of the unknown parameters is introduced
as:

a={q1 q2 g3 = am}’ (11)

Now, it is necessary to know the reference kinetic
energies of the plate and containing fluids in
order to calculate the coupled natural frequencies
of the circular plate in contact with fluids. Using
the hypothesis of irrotational movement of the
fluid, the reference kinetic energy of the fluids can
be evaluated from its boundary motion.

27w rR
TFZ%po_{/O‘ wes (v, —dv) v dr db
1 27 AR (12)
+5 00| [ whi(r.ds)rdrdo

The reference kinetic energy of the circular plate
is presented :

. 1 " 27T AR
Tu=s0"t fo /0 P Woanldr do (13)

The maximum potential energy of the plate can be
approximated by
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~L * 4 2 R 2
Vax s D [ [ Wy dr do (14)

The correspondence between the reference total kine-
tic energy of each mode multiplied by its square
circular frequency and the maximum potential
energy of the same node are used. In order to find
natural frequencies and mode shapes of the plate
in contact with fluid, the Rayleigh quotient for
the plate vibration coupled with ideal fluid is used.
Minimizing Rayleigh quotient V,/(Ty+ Tr) with
respect to the unknown parameters gn, the non—
dimensional Galerkin equation can be obtained
and an eigenvalue problem and the natural fre-
quencies w can be calculated.

3. Analysis

3.1 Theoretical analysis

On the basis of the preceding analysis, the
non-dimensional Galerkin equation is numeri-
cally solved using MathCAD in order to find the
natural frequencies of circular plate coupled with
fluid. In order to check the validity and accuracy
of the results from the theoretical study, finite
element analyses are also performed and frequen-
cy comparisons between them are carried out for

the fluid-coupled system.

Fig. 2 Perforated plate
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The model of the fluid-coupled structure simu-
lates the lower control element guide plate of an
integral reactor, which is a circular perforated
plate with single or double hole pattern connected
to the fixed closed-type container which is made
of carbon steel. The plate is made of 321 SS
having a radius of 1384 mm and a thickness of 30
mm and 3 mm (Fig. 2). The physical properties
of the material at 310°C are as follows: Young’s
modulus=173.0 GPa, Poisson’s ratio=0.3, and
mass density==8027 kg/m®. Water is used as the
contained fluid, having a density of 703 kg/m®.
The sound speed in water is 653 m/sec, which is
an equivalent to the bulk modulus of elasticity of
0.30 GPa.

The frequency equations derived in the preced-
ing sections involve an infinite series of algebraic
terms. Before exploring the analytical method to
obtain the natural frequencies of the fluid-cou-
pled plate, it is necessary to conduct convergence
studies and establish the number of terms re-
quired in the series expansions involved. In the
numerical calculation, the Bessel-Fourier expan-
sion term S is set to 200 and the expanding term
m (or M) for the admissible function is set to 40,
which gives an exact enough solution by conver-
gence.

3.2 Finite element analysis

Finite element analyses using a commercial
computer code ANSYS 8.1 (ANSYS, 2004) are
performed to verify the analytical results for the
theoretical study. The results from finite element
method are used as the baseline data. Three dif-
ferent three-dimensional models are developed
for perforated plates with single pattern and dou-
ble hole pattern, and solid plate as shown in Fig.
3. Also, the solid plate submerged in fluid is
modeled, where the fluid region is divided into
a number of 3-dimensional contained fluid ele-
ments (FLUIDS80) with eight nodes having three
degrees of freedom at each node. The fluid ele-
ment FLUIDSO is particularly well suited for cal-
culating hydrostatic pressures and fluid/solid in-
teractions. The circular plate is modeled as elastic
shell elements (SHELL63) with four nodes.

The perimeter nodes of the plate are coupled
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with the nodes of the container which are fixed in
all six degrees of freedom. The fluid movement at
top and bottom of the container is considered to
be constrained in the vertical direction for the
bounded surface fluid case. The vertical velocities

(a) Perforated plate with double hole

PERFIRATE

(b) Perforated plate with single hole

(c) Solid plate

Fig. 3 Finite element models
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of the fluid element nodes adjacent to each surface
of the wetted circular plate coincide to those of
plate so that the model can simulate Eqs. (9a) and
(9b).

Several cases of the finite element analyses are
performed as in Table 2 depending on the tem-
perature, plate thickness or plate modeling etc.
The Block Lanczos method is used for the ei-
genvalue and eigenvector extractions to calculate
300 frequencies including fluid modes (Grimes et
al., 1994). It uses the Lanczos algorithm where
the Lanczos recursion is performed with a block
of vectors. This method is as accurate as the
subspace method, but faster. The Block Lanczos
method is especially powerful when searching for
eigenfrequencies in a given part of the eigenvalue
spectrum of a given system. The convergence rate
of the eigenfrequencies will be about the same
when extracting modes in the midrange and hig-
her end of the spectrum as when extracting the
lowest modes.

4. Results and Discussion

The frequency comparisons between analytical
solution developed here and finite element meth-
od are shown in Fig. 4 for plates with thickness of
30 mm in air, respectively. The symbol 2 in the

10000
Solid Plate in Air (30 mm)
—c— FEM
++C++ Theory m'=5
b
= i m'=4
g
By,
g =3
m=
5‘ L /
e m=2
2000
m'=]
0 | 1 1 1 1 1

0 1 2 3 4 5 6 7
Number of Nodal Diameter (n)
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tables represents the number of nodal circles of
the mode and the symbol # means the number of
nodal diameter. The frequency differences of plate
in air are almost negligible and the comparison of
frequencies between thickness of 30 mm and 3 mm
shows that the frequencies are proportional to the
thickness. This is also shown from the theory as
follows.

Introducing Rayleigh quotient of the circular
plate in air, Eq. (10) becomes for T»=0 as

e Va

=T (15)

where V; and 7, are determined from Eqgs. (14)
and (13), respectively. Insertion of Egs. (14) and
(13) into Eq. (15) and the relation between the
natural frequency and the thickness of the solid
plate give

o [ D _ [ R
oh 1201 (1—47)

B E
=hy 120(1—4)

Or, the natural frequency of the plate in air is pro-

(16)

portional to the thickness of the plate. The rela-
tion between the natural frequency and Poisson’s
ratio is also determined from Eq. (16) and is
shown in Fig. 5.

3.0

Circular Plate in Air
Normalized w.r.t. =0

Normalized Frequency
=
T

1.0 P T L

0.0 0.2 0.4 0.6 0.8 1.0

Poisson's Ratio

Fig. 4 Frequency comparisons of solid plate be-
tween FEM and theory (thickness=30 mm)

Fig. 5 Relation between natural frequency and
Poisson’s ratio
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For the plate submerged in fluid, Eq. (10) be-
comes so complicated and the relation between the
natural frequency and the plate thickness is not
expressed explicitly as in the case of the in-air
condition, which makes it hard to predict modal

Table 1 Comparison of natural frequencies between
theoretical and FEM results for the solid
plate submerged in fluid

Mode 310C

Error

n m FEM Theory (%)
1 66.8 66.8 0.00
2 276.6 276.7 —0.04
1 3 336.6 336.7 —0.03
4 746.9 747.4 —0.07
5 801.1 801.1 0.00
1 165.4 165.4 0.00
2 458.9 458.8 0.02
2 3 524 524.3 —0.06
4 968.2 969.2 —0.10

5 1007.6 1007.5 0.01
1 298.8 298.9 —0.03
2 631.1 631.3 —0.03
3 3 726.3 727 —0.10
4 1200.5 1202.3 —0.15
5 1204.3 1204.3 0.00
1 460.6 461 —0.09

2 798.8 798.9 —0.01
4 3 934.4 935.5 —0.12
4 1394.7 1394.7 0.00
S 1444.4 1447.1 —0.19
1 643.6 644.4 —0.12
2 963.8 964 —0.02
5 3 1144.5 1146.1 —0.14
4 1580.6 1580.6 0.00

5 1696.3 1699.8 —0.21
1 840 841.2 —0.14
2 1126.8 1127.1 —0.03
6 3 1356.3 1358.5 —0.16
4 1763.1 1763.2 —0.01

5 1949.7 1953.7 —0.21

* Error= (FEM—Theory) /FEM X 100
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characteristics of the plate submerged in fluid
with respect to the plate thickness.

The frequency comparisons between theory and
finite element method are shown in Table 1 for
plate submerged in fluid with bounded surface.
There is a good agreement between them with the
discrepancies of less than 1%.

Frequencies of solid plate and perforated plate
with single or double hole pattern and their nor-
malized values are shown in Figs. 6 and 7, respec-

1000
I Plate in Air (3 mm)
| —e— Solid
[ ---o-- Perforated w/ single hole .
BOD = - —o-- Perforated w/ double hole :
L - 5
- L
N 600 -
E L =t
) .
(4]
= L
5
= 400
g
= L
| - m'=2
-
200 -
L -4 m'=1
I =
0 1
0 1 2 3 4 5 6 T
Number of Nodal Diameter (1)
Fig. 6 Frequency comparisons between solid and

perforated plates in air

1.0

| Normalized w.r.t. Perforated Plate (3 mm)
with single hole
—~ I —o—m' =1
"‘;\_ r —o—m' =2
Z o9} o m=3
z L —o—m' =4
é *>—m =3
o N | with double hole
— r ) —o—m' =1
508 F o—m' =2
5 L o m'=3
% —Oo—m' =4
E : o—m=5
3 0.7
8 07r
= L
£
£ L
Z, L
0.6 L ] 1 1 1 1 1 1 ] 1
0 1 2 3 4 5 6 7 8 9

Number of Nodal Diameter (n)

Fig. 7 Normalized frequencies of perforated plate w.
r.t. solid plates in air
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tively. In all cases, as the number of nodal circles
increases, frequencies increase, which were not
shown in cylindrical shells (Jhung et al., 2002 ;
Jhung et al., 2003). The inclusion of holes de-

-
G
onad Plase ia Ads, Node=l, 143 |H:
NS
Coaedly
1
x
oLid PLate in Alr, Nade=d, 909)uz
)
™ T,
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creases the frequency significantly and the effect
of holes is more significant for double hole pat-
tern and this is more significant as the modal
number increases. Typical mode shapes of radial

Flate in Mz, Mode=g, 5%

Fig. 8 Typical mode shapes of solid plate
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modes are shown in Figs. 8 and 9 for the solid
and perforated plate, respectively.

The frequency comparisons between plate in air
and plate submerged in fluid are shown in Fig.

Solad Plate ia Adx, Mode=1, 143|H:
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10. The effect of fluid on the frequencies of cir-
cular plate wetted with fluid can be assessed using
the normalized frequency defined as the natural
frequency of a structure in contact with a fluid

Selad Flase aa Asr. Mede=2, 195 |E:

clid Tlate in Ao

Hode=§, %57 |Hz

Ais, Mode=D, §51|Hz

Fig. 8

Typical mode shapes of solid plate (Cont’d)
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divided by the corresponding natural frequency
in a vacuum. The normalized natural frequencies
have values between one and zero due to the add-
ed mass effect of fluid. Fig. 11 shows the nor-

Porfocuted Plate io Rls, Modewl] 129 M:

Parforated Slate ir Rir, Modewd] 414 Hr

![‘e:t:-:;:ec Tlate 1p B, Modee]

€11 Hr
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malized natural frequencies for the plate modes
submerged in fluid. As the number of nodal cir-
cles or diameters of the plates increases, the nor-
malized natural frequencies increase by the grad-

R —— i [ -

Eerforated Flate in kir, Modews, &84 H=

Parf

ratad Plate in Riv, Nadae3,

Fig. 9 Typical mode

shapes of perforated plate
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ual reduction of the relative added mass effect. The frequency comparisons between perforat-
Therefore, an increase of nodal lines or nodal ed plate with original properties and solid plate
circles causes an increase in the normalized natu- with equivalent properties in air are shown in
ral frequencies for all cases of modes. Fig. 12, where the equivalent material properties

Fecforated Plate ia Adc, Mode=1%, 1073 M= Ferforalod Plate is Ale, Mode=14. 1004 %

ACEHEN

Ferforated Zlate in Ad:, Moce=1y, 1320 ¥z Ferforated Plate in Adr, Mode<21, 137) %2

Fig. 9 Typical mode shapes of perforated plate (Cont’d)
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Fig. 10 Frequency comparisons of solid plate be-

tween in air and submerged in fluid
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Fig. 11 Normalized frequencies of solid plate

submerged in fluid w.r.t. in air

are calculated from Article A-8000 of Appendix
A to the ASME code Section III (ASME, 2004).
Their normalized values shown in Fig. 13 indi-
cates that using effective elastic constants of ASME
code generates too low frequencies and therefore
it is not proper to use the solid plate model with
the effective elastic constants provided by the
ASME code for the modal analysis of the per-
forated plate. Because the frequency is propor-
tional to the square root of the elastic constant,

Myung Jo Jhung, Jong Chull Jo and Kyeong Hoon Jeong

HO00
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Fig. 12 Frequency comparisons between perforated
plate with original properties and solid plate
with equivalent properties in air (thickness=
30 mm)
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Fig. 13 Normalized frequencies of perforated plate

with original properties with respect to solid
plate with equivalent properties in air (thick-

ness=30 mm)

the effective elastic constants must be increased by
the ratio of about 6 to match the frequencies. The
effective elastic constants given in the ASME code
are restricted to plates having a thickness ¢ of
greater than twice the pitch of the hole pattern P
and the model studied here has ¢#/P=30/72=
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0.42 which is not proper to apply the ASME
code values. But the effective elastic constants
generated by O’Donnell (1973) for the thin per-
forated plate are also found to be too low. This
necessitates the redefinition of the equivalent ma-
terial properties for the modal characteristics of
the perforated plate.

Considering a circular perforated plate with a
triangular penetration pattern as shown in Fig.
14, where the radius of the plate and pitch of the
hole are 1384 mm and 72 mm, respectively, the
modal characteristics and the equivalent elastic
constants are investigated as a typical case.

As mentioned earlier, the equivalent elastic
constants of perforated plate with a triangular
penetration pattern proposed by the ASME code
are found to be no more valid for the modal
analysis. Therefore it is necessary to redefine the
equivalent elastic constants such that the modal
characteristics of the perforated plate with origi-
nal properties be the same with those of the solid
plate with modified equivalent properties. The
best way to find the equivalent constant is as
follows :

(a) Develop finite element model of solid plate
and perforated plates with various ligament
efficiencies.

~I0SXEESS THAL

><o “f‘ Jb{)
/(M)m; ( O ¢ M)C?)O/f
o300 >§,c3 Qe OROS0X
/ SOROROEORDR ><o><o R
Jf"‘\.)f‘\(_) ,_ O(%
[sosestsssantss 05,,;b,>og'
6% % C‘( 0 *OJO ORI |

\O’\C}u ::OCV \_) O 0800 f
NSisscsassasscsscsesy
\ _/P\_/ o(_‘o \_CJ O
O0=0 =0 C’:}F\J \O O\)O'/
oS uo,o::O% iy
0 ORO=O=0 3
\C 8(\ e e ‘_(J{J—{
52 V,‘IA
PATTERN G

Fig. 14 Perforated plate with a triangular penetra-
tion pattern
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(b) Perform the modal analyses of perforated
and solid plate with original properties.

(c) Compare the frequencies and find the ratio
of frequencies of perforated plate to those of solid
plate.

(d) Find the multipliers of Young’s modulus of
solid plate to match frequencies of perforated
plate with original properties using the relations
between frequency and Young’s modulus.

(e) Effective elastic constant for each ligament
efficiency is averaged for all modes.

This kind of analysis is repeated for several
ligament efficiencies 7=/%/P. Because the fre-
quency is proportional to the thickness of the
plate even if it is perforated, it is not necessary to
perform several analyses with respect to the thick-
ness. Therefore in this study the thickness ratio of
t/P=0.05 is considered for the typical case.

The natural frequencies are summarized in Fig.
15 and their normalized values of perforated plate
with respect to the solid plate are obtained. Be-
cause the elastic constant is proportional to the
square of the frequency, the normalized frequen-
cies are squared and these are the effective elastic
constants with which the same modal frequencies
as the perforated plate are obtained for the solid

1000 —
| Plate in Air (#/P=(.05)
Solid Plate
—n =0.05
800 |- n =01
—n =02
n =03
m'=4
N 600
T
5 m'=3
=] L
)
% 400
i3 [ =2
200 m'=1
0 1
7

Number of Nodal Diameter (1)

Fig. 15 Natural frequencies of plate in air for solid
plate and perforated plates with various
ligament efficiencies
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plate. Because the effective values are depend on
the mode numbers, their average values are used.
There is a large difference between effective elastic
constants of Slot and O’Donnell (1971) and those
determined here. Even though values from Slot
and O’Donnell are for the thick plate ¢/P>2.0, it
is not assumed to be valid from the modal char-
acteristic point of view for the perforated plate

1.0

.8

0.6

Effective Elastic Constants (E*/FE)

0.0

0.1 I
Ligament Efficiency, n = h/P

Fig. 16 Effective elastic constants of perforated plate
with a triangular penetration pattern
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0 1 2 3 4 5 6 7
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Fig. 17 Comparison of frequencies between per-

200 [ " J
L /;/-j/o/w‘;’//;/,; m'=1

forated plate with original property and sol-
id plate with equivalent property
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due to the fact that the frequency is proportional
to the thickness of the plate. Figure 16 is the final
effective elastic constants proposed for modal char-
acteristics of the perforated plate with a triangular
penetration pattern, which can be represented for
0.05<79=<0.8 as:

E*

E

=0.6106+1.12537—2.71187>
+ 7 7 (17)
+4.08127°—2.11287*

The natural frequency of the plate is proportion-
al to the thickness of the plate even for the thick
one, which shows the frequencies of the per-
forated plate with respect to the thickness with a
ligament efficiency of 0.05. Therefore effective
elastic constants proposed in Fig. 16 can be used
for all thickness range of the plate.

Figure 17 shows the frequency comparisons
between perforated plate with original properties
and solid plate with effective elastic constant de-
termined in this study and it is found to be in
good agreement between them with the difference
of less than 3% verifying the validity of the meth-
od developed here to calculate the effective elastic
constants for the modal analysis of the perforated
plate with a triangular penetration pattern.

Using the effective Young’s modulus redefin-
ed, the frequencies of perforated plate with trian-
gular penetration pattern submerged in fluid are

800
| Perforated Plate with Equivalent Property (n = 0.05)
| —O—in Air
-++0-++ Submerged in Fluid m=35
ol0
= !
jum 5
=
Z 400 -
B -
=
[=n} 5
@
= L
200
i
Number ol Nodal Diameter (1)
Fig. 18 Frequency comparisons of perforated plate

between in air and submerged in fluid
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Fig. 19 Normalized frequencies of perforated plate

submerged in fluid w.r.t. in air

calculated assuming that no cross flow of fluid
occurs. The equivalent Young’s modulus for 7=
0.05 is E*/E=0.66. The frequencies for the equi-
valent Young’s modulus are shown in Fig. 18 for
perforated plates in air and submerged in fluid
and normalized frequencies are also shown in
Fig. 19. They are comparable to Figs. 11 and 12
which show the frequency comparisons of solid
plate between in air and submerged in fluid and
their normalized values. By comparing normaliz-
ed frequencies between Fig. 11 and Fig. 19, the
ratio of frequency reduction due to the added
mass effect of fluid is found to be the same for the
solid plate and perforated plate.

5. Conclusions

An analytical method to estimate the coupled
frequencies of the circular plate submerged in
fluid is developed using the finite Fourier-Bessel
series expansion and Rayleigh-Ritz method. To
verify the validity of the analytical method de-
veloped, finite element method is used and the
frequency comparisons between them are found to
be in good agreement.

For the perforated plate submerged in fluid, it
is almost impossible to develop a finite element
model due to the necessity of the fine meshing of
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the plate and the fluid at the same time. This ne-
cessitates the use of solid plate with equivalent ma-
terial properties. Unfortunately the effective elas-
tic constants suggested by the ASME code are
found to be not valid for the modal analysis.
Therefore in this study the equivalent material
properties of perforated plate are suggested by
performing several finite element analyses with
respect to the ligament efficiencies.

Using the equivalent Young’s modulus defined
in this study, the modal analysis of the perforated
plate submerged in fluid is performed. The nor-
malized frequencies of perforated plate submerged
in fluid with respect to the perforated plate in air
are calculated and they are compared with those
of solid plate. It is found that the frequency re-
duction due to the added mass effect of the fluid
is the same irrespective to the plate whether it is
solid or perforated.
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